AutoGen Guide 2026 — Microsoft's Most Advanced Multi-Agent AI Framework
AutoGen (by Microsoft Research) models agents as conversational participants. Agents talk to each other via a message-passing interface, making it natural to build systems where agents debate, critique, and collaborate through dialogue.
Install
pip install pyautogenTwo-Agent Conversation
import autogen
config_list = [{"model": "claude-opus-4-6", "api_key": "YOUR_KEY", "api_type": "anthropic"}]
# Assistant that can write and execute codeassistant = autogen.AssistantAgent( name="assistant", llm_config={"config_list": config_list},)
# Human proxy that can execute codeuser_proxy = autogen.UserProxyAgent( name="user_proxy", human_input_mode="NEVER", max_consecutive_auto_reply=10, code_execution_config={"work_dir": "coding"},)
# Initiate a taskuser_proxy.initiate_chat( assistant, message="Write a Python script that fetches the top 5 AI papers from arXiv today.",)GroupChat (Multiple Agents)
groupchat = autogen.GroupChat( agents=[user_proxy, researcher, coder, critic], messages=[], max_round=15,)manager = autogen.GroupChatManager(groupchat=groupchat, llm_config={"config_list": config_list})
user_proxy.initiate_chat(manager, message="Build and test a web scraper for HackerNews")When to Use AutoGen
- Tasks that benefit from agent debate and iteration (code review, problem solving)
- When you want automatic code execution in the loop
- Research workflows where the “conversation” format adds clarity