Skip to content

What Are AI Agents? Concepts, Architecture & How They Work (2026)

An AI agent is a system that perceives its environment, reasons about it, and takes actions to achieve a goal — repeatedly, in a loop.

What Makes Something an “Agent”?

The minimal definition: a model + a loop + tools.

while not done:
observation → LLM → action → execute → observation

Most LLM chat interfaces are not agents — they’re single-turn request/response. An agent persists across turns, maintains state, and uses tools to affect the world.

The Agent Loop

Every agent runs some variation of the ReAct loop:

  1. Observe — receive input (user message, tool result, environment state)
  2. Think — reason about what to do next (the LLM’s job)
  3. Act — call a tool, execute code, or produce output
  4. Observe — receive the result and loop
# Simplified agent loop
while not agent.is_done():
thought = llm.think(agent.context)
action = thought.next_action
result = tools.execute(action)
agent.context.append(result)

Core Architecture

┌─────────────────────────────────────────┐
│ Agent System │
│ │
│ ┌─────────┐ ┌──────────────────┐ │
│ │ Input │───▶│ LLM (Brain) │ │
│ └─────────┘ └────────┬─────────┘ │
│ │ │
│ ┌───────────▼──────────┐ │
│ │ Tool Dispatcher │ │
│ └─┬──────┬──────┬─────┘ │
│ │ │ │ │
│ ┌────▼┐ ┌───▼─┐ ┌─▼────┐ │
│ │ Web │ │Code │ │ API │ │
│ │ Srch│ │Exec │ │Calls │ │
│ └────┘ └─────┘ └──────┘ │
│ │
│ ┌──────────────────────────────────┐ │
│ │ Memory / State │ │
│ └──────────────────────────────────┘ │
└─────────────────────────────────────────┘

See Also